Monitoring of the Fellow Eye in Neovascular Age-Related Macular Degeneration

Background

Neovascular age-related macular degeneration (nAMD) is a major cause of central vision loss, affecting 10% of people aged ≥65 years.1 The development of nAMD typically manifests in one eye and the presence of nAMD in one eye is a major risk factor for its development in the fellow eye.1,2 Early detection of nAMD in the fellow eye is critical to preventing bilateral vision loss, thereby preserving patient functioning and quality of life.3 Imaging techniques such as optical coherence tomography (OCT) can potentially detect asymptomatic choroidal neovascularization (CNV). However, many patients with nAMD may have already experienced a decrease in visual acuity (VA) prior to the detection of lesions.2,4,5 A recent development has been the increased availability of home-based monitoring techniques which present an opportunity for patients to monitor their own vision.3,6,7

A review of the literature was conducted to examine the rationale for monitoring the fellow eye in at-risk patients with unilateral nAMD, with a focus on the advantages and limitations of current detection methods in the clinic and at home.8

Viewpoint

Based on the current evidence, the Vision Academy recommends the following for the monitoring of the fellow eye in patients with unilateral nAMD:

1. Monitoring of the fellow eye should be considered standard of care in most patients with CNV due to nAMD. Examinations should be performed at least every 3 to 4 months after the diagnosis of CNV in the first eye.3

 - Early detection of nAMD is essential to preventing vision loss and maintaining quality of life. Better visual outcomes occur if treatment is started early, before the CNV lesion advances and loss of VA occurs.3–11
 - Patients examined in the clinic for intravitreal injection should also undergo examination of the fellow eye at each visit
 - Patients should be carefully educated on the symptoms associated with disease progression in the fellow eye, as well as on the importance of early access to diagnosis and proper care

2. In the clinic, patients should be monitored by VA examination and appropriate imaging techniques

 Patients are unlikely to notice small changes in their vision during the early stages of disease, so VA examination and appropriate imaging techniques are critical aspects of fellow-eye monitoring. A range of techniques are available for the detection of nAMD, from chart-based methods such as Amsler grids and VA testing through to specific software and devices such as microperimetry, OCT, OCT angiography, and noise field perimetry.3,7,12,13
3. Patients should be encouraged to monitor their vision at home through weekly monocular reading tests, and should employ home-based technologies as appropriate for the patient.

During the initial stages of nAMD, patients may remain asymptomatic and compensatory brain mechanisms may prevent them from noticing initial changes in vision." In addition, the inability of patients or their caregivers to get to clinic appointments is a key barrier to treatment.14

Advancements in home-based detection and monitoring of nAMD (including use of smartphones and other personal devices, and the development of a home-based OCT system) can help patients overcome these barriers and prevent delays in treatment.3,6,7,15–18 The specificity and sensitivity of an instrument, along with its ease of use, should be carefully considered when recommending it for patient monitoring at home.

- Simple tests, including monocular reading of a standardized text at the limit of a patient’s reading ability, can be utilized to detect changes in vision and are especially important in those patients who already have a diagnosis of nAMD in one eye
- Patient ability to utilize home-based devices should be determined through in-office trial sessions under clinical supervision, and any comorbid conditions or disabilities should also be considered

Further considerations

While home monitoring technologies are becoming increasingly available to patients, potential challenges with using these technologies will need to be addressed.

For example, consistency of viewing distance and ambient illumination may be challenging with self-testing.18 Additionally, the use of smartphone-based apps may be difficult for patients with poor eye, head, and hand coordination or dexterity problems.18 Operation of a home-based OCT system may be difficult and time-consuming for elderly patients who struggle with technology. Finally, home monitoring tools may not be affordable or available to all patients, which may prevent the broad-scale use of these technologies. Further developments need to address such clinical challenges.

References